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Abstract

In this study, transverse vibrations of a beam made of two materials and with a variable cross section
were investigated. Dimensionless natural frequency values of the system were found by the Rayleigh-Ritz
approach. Moreover, the energy amounts of the system accumulated per unit mass were calculated. The

results were given in tables for comparison.
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Sabit Gerilmeli Bir Kirisin Enine Titresimlerinin Incelenmesi

Ozet

Bu ¢aligmada degigken kesitli izotrop malzemeden yapilmig bir kirigin enine titresimleri incelendi. Rayleigh-
Ritz yaklagimi kullanilarak, sistemin boyutsuz dogal frekans degerleri bulundu. Ayrica sistemin birim

kiitle igin biriktirdigi enerji miktarlar1 hesaplandi.

Degisik malzeme ve hiz degerleri i¢in simulasyonlar

gergeklegtirildi. Karsilagtirma yapabilmek i¢in sonuglar tablolar halinde verildi.

Anahtar So6zciikler: Enine titresimler, Boyutsuz dogal frekans, izotrop malzeme

1. Introduction

Many investigations were carried out on vibrations
of beams by Prescott (1961) and Meirovitch (1971).
Thickness function for a constant stress beam made
of isotropic material and subjected only to bending
stress was obtained by Georgian (1989). A study
for the optimum design of a flywheel was done by
Georgian (1989). Natural frequencies about this fly-
wheel were obtained for various modes by Giiven
and Celik (1995), and Celik (1988). The flywheel
was considered to have a constant stress as the de-
sign criteria and the stress values about the fly-
wheel were obtained. In this study, transverse vi-
brations of a rotating cantilever beam with a rect-
angular cross section under constant stress were in-

vestigated. The Rayleigh-Ritz method was used for
analysis (Meirovitch, 1971). First of all, the thick-
ness function and the stress equations satisfying the
constant stress condition was obtained. To provide
the boundary conditions, a mass was fixed to the
beam. To the beam to accumulate maximum energy,
the outer isotropic material should have high density
and the inner material should have low density and
high strength.

The aim of this study was to investigate the effect
of designing the beam sections stressed uniformly un-
der centrifugal force on lateral vibrations of beams.
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2. Mathematical Model

2.1. Beam with constant stress

A variable crossbeam with constant stress consists
of two parts, namely, the constant cross section part
and the variable cross section part as can be seen in
Figures 1 and 2.

The following equation can be obtained by force
equilibrium

—Ulh(x)bl +P($)+(0’1 +d0’1)(h+dh)bl = 0(1)

Here, h, by, m, 01, and P are thickness fraction,
constant cross section width, mass, radial stress and
force respectively,

P(z) = m(z)zQ?

m(z) = pabih(z)dz

Second order terms i.e. in equation [2.1] are ignored
and dividing by b; dx the following equation is ob-
tained.

1dh _paQ2

= 2
hdx le 2)

Thickness function can be derived by integration of
equation [2.2] with boundary condition

z=aand h=h,

Ep Po

Figure 1. Beam with constant stress

pale? (1 (2)?)

h = hge 21 (3)

In equation [2.3], x=0 and h=hg are taken as bound-
ary conditions, stress value can be found as follows.

paQ2a2
g1 =
! QZn%l

(4)
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Figure 2. Variable cross section beam with constant
stress

2.2. Beam with constant cross section

A constant cross section part is added to the beam
in order to achieve the boundary condition in Figure
3.

0y

o,+do,

Figure 3. Beam with constant cross section

Using equilibrium at force effected on added part,
the following equation is found:

—09 Ay + ppQ2 Apada + (03 + dos) Ay =0 (5)

Here, 02, Ay and h, are radial stress, cross section
area and thickness respectively

Ap =bihg
- prQbQ T2
or = 2= [1- (1] (6)
Therefore, 01 = 09 at x=a
2 2 272 9
pe _ pO [, (o) o
2In e 2 b

A relation for a/b ratio can be found as follows
for the optimum designed beam.
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3. Energy Equations

Maximum potential and kinetic energy accumulated
in the system are calculated. Transverse displace-
ment can be calculated for harmonic vibration as
follows:

w = W(x) cos wnt (9)

W(x) is a function which provides geometric
boundary conditions for transverse displacement.
Maximum value of potential energy due to bending
(Vemaz) can be written as follows:

Vinae = % [ 10) (%f)m (10)

bih(z)® b3 , N
O0<z<a—I(z)= 11(230) — 112a63ln:—2[1—(3)2]

byh?
12

Maximum potential energy is found for the whole
beam due to bending as follows:

a<zr<b—oI,=

E. I, [*[(?W\? o rapy_ e
0

2 0x?

By, [P /02°W\?

—_— —_— 11
* 2 /. (8302 d (11)

Here,
E, = Young elasticity module of first part

E, = Young elasticity module of second part
Potential energy due to rotation (V) is written
[2] as follows:

1 [ (0w)? 1 [ (oW
oy | (5) raee=3 [ ()
o A cos® w, tdx (12)

Maximum potential energy is

1 oW \?
— = [ (22 54 1
V.. 2/ ( o > ocAdzx (13)

Total potential energy can be calculated by using
the following equations:

2
Vémae = 612ha /“ (%—W> el"%[l_(§)2]01dx +
O x
biha [P [OW 2
B % O'de
a
2
/ a (Z_W> =0 d +
0 X

[ (2 o ”

Kinetic energy of the system can be found as fol-
lows:

Aq

max 9
Aq

2

1 (dw\’ 1 9
= — —_— = —(— 1 1
daT 5 (dt) dm 2( wp, W sinw,t)*pAdz (15)
1
Tonar = §pw%/W2Adx

Maximum kinetic energy is

1 a h Y
Tmaz = §paw%blha/ WQQZ"%[I_(E)Q]dx
0
1 9 b )
+_pbwnb1ha W4dx
2 a

Tmaz = fpawgt/ WQ@M%[I_(EF]CZJ:
0

Ay b,
+7pbw3/ W2dx (16)
a

At the same time, kinetic energy can be rewritten as
follows:

1
T = 5JQ2 (17)
Mass inertia moment can be expressed as follows:

J = /xQdm dm = pAdx

a b
J:pablha/ xQel"%[1—<%>21dx+pbblha/ 22dz(18)
0 a

Total mass m is,

a h " b
m = pablha/ eln%[l_(g)ﬂdx +pbb1ha/ dx (19)
0 a
Inertia moment per unit mass is
T .
L UlmaaK (20)
m Pa
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Here, K and are the shape function and maximum
stress limit for constant stress area, respectively.

o Infe b PRI de 4 [ ¢

(t)? ba Jel"LZ_S[l_(E/t)Z].de—i—ftl ede

(21)
T
= — ﬁ = s
¢ b b
Formulation of transverse displacement can be

chosen as follows under geometric boundary condi-
tions; the following matrix form can be obtained

W = apa® + a1z + asz* + ... (22)

from solution of the energy equation by the Rayleigh-
Ritz approach:

(4] —wi[BD 4 - p =0 (23)

The non-dimensional natural frequencies can be
found as follows:

~ Apbt Apbt
Q=0 Jp, = Wp 24
VP EL e\ P E L (24)

4. Numerical Results

After the investigation of the vibrations about the
beam with a variable cross section, dimensionless
natural frequency values were obtained according to
dimensionless rotating velocity, while dimensionless
rotating velocity and ln%ﬂl value increase [Tables 1-
3.

The outer part was made of high density and
isotropical composite material [E,=85 GPa] having
high elasticity module. The frequency investigation
was performed by changing the material [F,=29-
55-65GPa] of the inner part. While increasing the
elasticity of the inner material, the frequencies in-
crease. When comparing the frequencies of the con-
stant cross section, the frequencies of the constant
stress beam were observed to be higher [Tables 1,4].
When choosing a constant cross-sectioned outer part
made of a material with high elasticity module and
high density, and an inner part made of low den-
sity, the energy amounts of the constant stress beam
accumulated per unit mass increases [Tables 5-7].
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Non-dimensional natural frequency of beam with
constant stress [Tables 1-5]

Table 1. £,=29 GPa p,=1550kg/m® FE,=85 GPa
pp=2000kg/m>

Q ln%ol wl w2 w3 wi wh

0.5 | 3.92 | 219 | 63.77 | 135.9 | 240.7
1 7.45 | 30.03 | 84.08 | 168.8 | 355.9
0 1.5 | 13.5 | 42.76 | 111.1 | 234.4 | 549.2
2 23.4 | 61.27 | 156.3 | 354.4 | 734.54

0.5 | 6.79 | 25.61 | 67.17 | 138.9 | 243.5
1 9.45 | 32.46 | 86.22 | 170.7 | 357.4
) 1.5 | 14.9 | 44.37 | 112.6 | 235.6 | 549.9
2 24.4 | 62.36 | 157.2 | 355.1 | 735.0

0.5 | 11.5 | 34.38 | 80.51 | 147.4 | 252.0
1 13.6 | 38.83 | 92.35 | 176.4 | 361.9
10 | 1.5 | 18.2 | 48.87 | 116.9 | 239.1 | 558.2

2 27.0 | 65.54 | 160.0 | 357.0 | 736.6

Table 2. E,=55 GPa p,=1550kg/m® FE,=85 GPa
pp=2000kg/m>
Qinfe | wl | w2 | w3 w4 w5
0.5 | 5.23]26.5| 73.8 | 151.5 | 285.2
1 9.81 | 37.1] 98.6 | 196.0 | 441.3
0| 1.5 [ 176 | 52.6 | 133 | 286.9 | 649.7
2 30.1 | 76.3 | 192 | 429.9 | 804.5
0.5 | 7.67 | 29.4 | 76.5 | 154.0 | 287.5
1 11.4 [ 39.0 | 100 | 197.6 | 442.5
5 | 1.5 | 18.7 | 54.0 | 134.4 | 287. | 650.3
2 30.9 | 77.2 ] 193.1 | 430.4 | 805.0
0.5 | 12.1] 36.9 | 84.11 | 161.2 | 294.2
1 15.1 | 44.3 | 105.4 | 202.3 | 445.8
10 | 1.5 | 21.6 | 57.7 | 137.9 | 290.5 | 652.1
2 33.2 | 79.7 | 195.3 | 432.0 | 806.4

Table 3. E,=65 GPa p,=1550kg/m® FE,=85 GPa
pp=2000kg/m>
Q|nfe ] wl | w2 w3 wi w5
0.5 | 5.66 | 28.12 | 77.59 | 157.9 | 304.4
1 10.6 | 39.81 | 104 | 208.2 | 474.2
0 | 1.5 [ 19.1]56.61 | 142.3 | 308.1 | 682.7
2 32.7 | 82.41 | 207.0 | 457.9 | 836.5
0.5 | 7.99 | 30.93 | 80.13 | 160.3 | 306.5
1 12.1 | 41.64 | 105.6 | 209.7 | 475.2
5 | 1.5 | 20.1]57.85 | 143.4 | 309.0 | 683.2
2 33.4 | 83.23 | 207.7 | 458.4 | 836.9
0.5 | 12.4 | 38.13 | 87.31 | 167.2 | 312.8
1 15.7 | 46.69 | 110.4 | 214.2 | 478.3
10| 1.5 | 22.8] 61.41 | 140.8 | 311.5 | 685.0
2 35.5 | 85.64 | 209.7 | 460.0 | 838.3
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While the ln%ﬂl ratio increases the energy amount
per unit mass increases [Tables 5-11]. When a ma-
terial with high strength and low density is used in
the inner and outer part, the accumulated energy
reaches the maximum value [Table 6].
Non-dimensional cantilever beam with constant

stress

Table 4. E,=F,=29 GPa
wl w2 w3 wl wb
3.51 | 21.99 | 61.59 | 127.92 | 222.59
6.44 | 25.40 | 65.11 | 131.2 | 225.67
11.19 | 33.58 | 74.58 | 140.54 | 234.75

SloolD

Variation energy value per unit mass for beam
with constant stress Tables 5-11

Table 5. E,=29 GPa 0amaz=115 MPa E,=85 GPa

hq
in ™

K | T/M
0.5 | 0.38 | 11.08
1 | 044 1275
15 | 047 | 13.95
2 048 [ 13.95

Table 6. E,=55 GPa 0amaz=480 MPa E,=85 GPa

hq
n ™

K | T/M
05 | 0.4 | 41.01
1 | 045 | 46.30
15 | 047 | 48.84
2 1049 | 50.13

Table 7. E.=65 GPa 0amaz=290 MPa E,=85 GPa

hq
n ™

K | T/M
05 | 0.4 | 2478
1 | 045 | 27.97
15 | 0.47 | 29.51
2 ] 0.49 | 30.29

Table 8. E,=FEp=29 GPa 0amaez=115 MPa p,=1550
kg/m3

ln%l
K | /™M
05 | 042 | 12.17

1 | 045 1327
15 | 048 | 13.81

2 0.49 | 14.09

Table 9. E,=E,=55 GPa 04mas=480 MPa py,=1550
kg/m?

ln%l
K | /™M
05 | 042 436

1 | 046 | 4753
15 | 0.48 | 49.46

2 0.49 | 50.46

Table 10. E,=FE,=65 GPa 0umaz=290 MPa p,=1550
kg/m?®

hq
n ™

K | T/M
0.5 | 0.42 | 26.34
1 [0.46 | 28.71
15 | 0.48 | 29.88
2| 0.49 | 30.49

Table 11. E,=FE,=85 GPa 0umaz=480 MPa p,=2000
kg/m?

hq
in ™

K | T/M
0.5 | 042 ] 33.79
1 | 0.46 | 36.83
15 | 0.48 | 38.33
2 | 049 | 39.11
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