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Abstract

In this study, transverse vibrations of a beam made of two materials and with a variable cross section
were investigated. Dimensionless natural frequency values of the system were found by the Rayleigh-Ritz
approach. Moreover, the energy amounts of the system accumulated per unit mass were calculated. The
results were given in tables for comparison.
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Sabit Gerilmeli Bir Kirişin Enine Titreşimlerinin İncelenmesi

Özet

Bu çalışmada değişken kesitli izotrop malzemeden yapılmış bir kirişin enine titreşimleri incelendi. Rayleigh-
Ritz yaklaşımı kullanılarak, sistemin boyutsuz doğal frekans değerleri bulundu. Ayrıca sistemin birim
kütle için biriktirdiği enerji miktarları hesaplandı. Değişik malzeme ve hız değerleri için simulasyonlar
gerçekleştirildi. Karşılaştırma yapabilmek için sonuçlar tablolar halinde verildi.

Anahtar Sözcükler: Enine titreşimler, Boyutsuz doğal frekans, İzotrop malzeme

1. Introduction

Many investigations were carried out on vibrations
of beams by Prescott (1961) and Meirovitch (1971).
Thickness function for a constant stress beam made
of isotropic material and subjected only to bending
stress was obtained by Georgian (1989). A study
for the optimum design of a flywheel was done by
Georgian (1989). Natural frequencies about this fly-
wheel were obtained for various modes by Güven
and Çelik (1995), and Çelik (1988). The flywheel
was considered to have a constant stress as the de-
sign criteria and the stress values about the fly-
wheel were obtained. In this study, transverse vi-
brations of a rotating cantilever beam with a rect-
angular cross section under constant stress were in-

vestigated. The Rayleigh-Ritz method was used for
analysis (Meirovitch, 1971). First of all, the thick-
ness function and the stress equations satisfying the
constant stress condition was obtained. To provide
the boundary conditions, a mass was fixed to the
beam. To the beam to accumulate maximum energy,
the outer isotropic material should have high density
and the inner material should have low density and
high strength.

The aim of this study was to investigate the effect
of designing the beam sections stressed uniformly un-
der centrifugal force on lateral vibrations of beams.
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2. Mathematical Model

2.1. Beam with constant stress

A variable crossbeam with constant stress consists
of two parts, namely, the constant cross section part
and the variable cross section part as can be seen in
Figures 1 and 2.

The following equation can be obtained by force
equilibrium

−σ1h(x)b1+P (x)+(σ1+dσ1)(h+dh)b1 = 0(1)

Here, h, b1, m, σ1, and P are thickness fraction,
constant cross section width, mass, radial stress and
force respectively,

P (x) = m(x)xΩ2

m(x) = ρab1h(x)dx

Second order terms i.e. in equation [2.1] are ignored
and dividing by b1 dx the following equation is ob-
tained.

1
h

dh

dx
= −ρaΩ

2

σ1
x (2)

Thickness function can be derived by integration of
equation [2.2] with boundary condition

x = a and h = ha

h0
Ea ρa

Eb ρb

ha

a

b

b1

Figure 1. Beam with constant stress

h = hae
ρaΩ2a2

2σ1
[1−( xa )2] (3)

In equation [2.3], x=0 and h=h0 are taken as bound-
ary conditions, stress value can be found as follows.

σ1 =
ρaΩ2a2

2ln h0
ha

(4)

σ1 h
P(x)

x dx

b1

σ1+dσ1

Figure 2. Variable cross section beam with constant
stress

2.2. Beam with constant cross section

A constant cross section part is added to the beam
in order to achieve the boundary condition in Figure
3.

dxx

σ2 σ2+dσ2

Figure 3. Beam with constant cross section

Using equilibrium at force effected on added part,
the following equation is found:

−σ2Ab + ρbΩ2Abxdx+ (σ2 + dσ2)Ab = 0 (5)

Here, σ2, Ab and ha are radial stress, cross section
area and thickness respectively
Ab = b1ha

σ2 =
ρbΩ2b2

2

[
1− (

x

b
)2
]

(6)

Therefore, σ1 = σ2 at x=a

ρaΩ2a2

2ln h0
ha

=
ρbΩ2b2

2

[
1−

(a
b

)2
]

(7)

A relation for a/b ratio can be found as follows
for the optimum designed beam.

a

b
=

 1
ρa
ρb

1
h0
ha

+ 1

 1
2

(8)
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3. Energy Equations

Maximum potential and kinetic energy accumulated
in the system are calculated. Transverse displace-
ment can be calculated for harmonic vibration as
follows:

w = W (x) cosωnt (9)

W(x) is a function which provides geometric
boundary conditions for transverse displacement.
Maximum value of potential energy due to bending
(Vemax) can be written as follows:

Vemax =
E

2

∫
I(x)

(
∂2W

∂x2

)2

dx (10)

0 < x < a→ I(x) =
b1h(x)3

12
=
b1h

3
a

12
e3ln

h0
ha

[1−( xa )2]

a < x < b→ Ib =
b1h

3
a

12
Maximum potential energy is found for the whole

beam due to bending as follows:

Vemax =
EaIb

2

∫ a

0

(
∂2W

∂x2

)2

e3ln
h0
ha

[1−( xa )2]dx

+
EbIb

2

∫ b

a

(
∂2W

∂x2

)2

dx (11)

Here,
Ea = Young elasticity module of first part

Eb = Young elasticity module of second part
Potential energy due to rotation (VG) is written

[2] as follows:

VG =
1
2

∫ (
∂w

∂x

)2

σAdx =
1
2

∫ (
∂W

∂x

)2

σA cos2 ωntdx (12)

Maximum potential energy is

VGmax =
1
2

∫ (
∂W

∂x

)2

σAdx (13)

Total potential energy can be calculated by using
the following equations:

VGmax =
b1ha

2

∫ a

0

(
∂W

∂x

)2

eln
h0
ha

[1−( xa )2 ]σ1dx+

b1ha
2

∫ b

a

(
∂W

∂x

)2

σ2dx

VGmax =
Aa
2

∫ a

0

(
∂W

∂x

)2

eln
h0
ha

[1−( xa )2]σ1dx+

Aa
2

∫ b

a

(
∂W

∂x

)2

σ2dx (14)

Kinetic energy of the system can be found as fol-
lows:

dT =
1
2

(
dw

dt

)2

dm =
1
2
(−ωnW sinωnt)2ρAdx (15)

Tmax =
1
2
ρω2

n

∫
W 2Adx

Maximum kinetic energy is

Tmax =
1
2
ρaω

2
nb1ha

∫ a

0

W 2eln
h0
ha

[1−( xa )2 ]dx

+
1
2
ρbω

2
nb1ha

∫ b

a

W 2dx

Tmax =
Aa
2
ρaω

2
n

∫ a

0

W 2eln
h0
ha

[1−( xa )2 ]dx

+
Ab
2
ρbω

2
n

∫ b

a

W 2dx (16)

At the same time, kinetic energy can be rewritten as
follows:

T =
1
2
JΩ2 (17)

Mass inertia moment can be expressed as follows:

J =
∫
x2dm dm = ρAdx

J = ρab1ha

∫ a

0

x2eln
h0
ha

[1−(xa )2]dx+ρbb1ha
∫ b

a

x2dx(18)

Total mass m is,

m = ρab1ha

∫ a

0

eln
h0
ha

[1−( xa )2]dx+ ρbb1ha

∫ b

a

dx (19)

Inertia moment per unit mass is

T

m
=
σ1max

ρa
K (20)
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Here, K and are the shape function and maximum
stress limit for constant stress area, respectively.

K =
ln hoha
(t)2

ρa
ρb

∫ 2

0
ξ2eln

ho
ha [1−(ξ/t)2].dξ +

∫ 1

t
ξ2dξ

ρa
ρb

∫ t
0 e

ln hoha [1−(ε/t)2].dε+
∫ 1

t εdε
(21)

ξ =
x

b
t =

a

b
,

Formulation of transverse displacement can be
chosen as follows under geometric boundary condi-
tions; the following matrix form can be obtained

W = a0x
2 + a1x

3 + a2x
4 + . . . (22)

from solution of the energy equation by the Rayleigh-
Ritz approach:

([A]− ω2
n[B])


a0

a1

.

.
an

 = 0 (23)

The non-dimensional natural frequencies can be
found as follows:

Ω̄ = Ω

√
ρb
Abb4

EbIb
ω̄n = ωn

√
ρb
Abb4

EbIb
(24)

4. Numerical Results

After the investigation of the vibrations about the
beam with a variable cross section, dimensionless
natural frequency values were obtained according to
dimensionless rotating velocity, while dimensionless
rotating velocity and ln h0

ha
value increase [Tables 1-

3].
The outer part was made of high density and

isotropical composite material [Eb=85 GPa] having
high elasticity module. The frequency investigation
was performed by changing the material [Ea=29-
55-65GPa] of the inner part. While increasing the
elasticity of the inner material, the frequencies in-
crease. When comparing the frequencies of the con-
stant cross section, the frequencies of the constant
stress beam were observed to be higher [Tables 1,4].
When choosing a constant cross-sectioned outer part
made of a material with high elasticity module and
high density, and an inner part made of low den-
sity, the energy amounts of the constant stress beam
accumulated per unit mass increases [Tables 5-7].

Non-dimensional natural frequency of beam with
constant stress [Tables 1-3]

Table 1. Ea=29 GPa ρa=1550kg/m3 Eb=85 GPa
ρb=2000kg/m3

Ω̄ ln h0
ha

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5
0.5 3.92 21.9 63.77 135.9 240.7
1 7.45 30.03 84.08 168.8 355.9

0 1.5 13.5 42.76 111.1 234.4 549.2
2 23.4 61.27 156.3 354.4 734.54

0.5 6.79 25.61 67.17 138.9 243.5
1 9.45 32.46 86.22 170.7 357.4

5 1.5 14.9 44.37 112.6 235.6 549.9
2 24.4 62.36 157.2 355.1 735.0

0.5 11.5 34.38 80.51 147.4 252.0
1 13.6 38.83 92.35 176.4 361.9

10 1.5 18.2 48.87 116.9 239.1 558.2
2 27.0 65.54 160.0 357.0 736.6

Table 2. Ea=55 GPa ρa=1550kg/m3 Eb=85 GPa
ρb=2000kg/m3

Ω̄ ln h0
ha

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5
0.5 5.23 26.5 73.8 151.5 285.2
1 9.81 37.1 98.6 196.0 441.3

0 1.5 17.6 52.6 133 286.9 649.7
2 30.1 76.3 192 429.9 804.5

0.5 7.67 29.4 76.5 154.0 287.5
1 11.4 39.0 100 197.6 442.5

5 1.5 18.7 54.0 134.4 287. 650.3
2 30.9 77.2 193.1 430.4 805.0

0.5 12.1 36.9 84.11 161.2 294.2
1 15.1 44.3 105.4 202.3 445.8

10 1.5 21.6 57.7 137.9 290.5 652.1
2 33.2 79.7 195.3 432.0 806.4

Table 3. Ea=65 GPa ρa=1550kg/m3 Eb=85 GPa
ρb=2000kg/m3

Ω̄ ln h0
ha

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5
0.5 5.66 28.12 77.59 157.9 304.4
1 10.6 39.81 104 208.2 474.2

0 1.5 19.1 56.61 142.3 308.1 682.7
2 32.7 82.41 207.0 457.9 836.5

0.5 7.99 30.93 80.13 160.3 306.5
1 12.1 41.64 105.6 209.7 475.2

5 1.5 20.1 57.85 143.4 309.0 683.2
2 33.4 83.23 207.7 458.4 836.9

0.5 12.4 38.13 87.31 167.2 312.8
1 15.7 46.69 110.4 214.2 478.3

10 1.5 22.8 61.41 140.8 311.5 685.0
2 35.5 85.64 209.7 460.0 838.3
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While the ln h0
ha

ratio increases the energy amount
per unit mass increases [Tables 5-11]. When a ma-
terial with high strength and low density is used in
the inner and outer part, the accumulated energy
reaches the maximum value [Table 6].

Non-dimensional cantilever beam with constant
stress

Table 4. Ea=Eb=29 GPa

Ω̄ ω̄1 ω̄2 ω̄3 ω̄4 ω̄5
0 3.51 21.99 61.59 127.92 222.59
5 6.44 25.40 65.11 131.2 225.67
10 11.19 33.58 74.58 140.54 234.75

Variation energy value per unit mass for beam
with constant stress Tables 5-11

Table 5. Ea=29 GPa σamax=115 MPa Eb=85 GPa

ln h0
ha

K T/M
0.5 0.38 11.08
1 0.44 12.75

1.5 0.47 13.95
2 0.48 13.95

Table 6. Ea=55 GPa σamax=480 MPa Eb=85 GPa

ln h0
ha

K T/M
0.5 0.4 41.01
1 0.45 46.30

1.5 0.47 48.84
2 0.49 50.13

Table 7. Ea=65 GPa σamax=290 MPa Eb=85 GPa

ln h0
ha

K T/M
0.5 0.4 24.78
1 0.45 27.97

1.5 0.47 29.51
2 0.49 30.29

Table 8. Ea=Eb=29 GPa σamax=115 MPa ρb=1550
kg/m3

ln h0
ha

K T/M
0.5 0.42 12.17
1 0.45 13.27

1.5 0.48 13.81
2 0.49 14.09

Table 9. Ea=Eb=55 GPa σamax=480 MPa ρb=1550
kg/m3

ln h0
ha

K T/M
0.5 0.42 43.6
1 0.46 47.53

1.5 0.48 49.46
2 0.49 50.46

Table 10. Ea=Eb=65 GPa σamax=290 MPa ρb=1550
kg/m3

ln h0
ha

K T/M
0.5 0.42 26.34
1 0.46 28.71

1.5 0.48 29.88
2 0.49 30.49

Table 11. Ea=Eb=85 GPa σamax=480 MPa ρb=2000
kg/m3

ln h0
ha

K T/M
0.5 0.42 33.79
1 0.46 36.83

1.5 0.48 38.33
2 0.49 39.11
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